Система комплемента
4-04-2015, 07:51 | Автор: admin | Категория: Патология » Патофизиология воспаления
Система комплементаВ конце XIX века Т. Наттелл, а позже Ж. Борде (1895) предполагали, что существует единственный термолабильный компонент плазмы, опосредующий литическое действие антител на бактерии. К настоящему времени идентифицировано 13 белков системы комплемента и 7 ингибиторов. Эти регуляторы циркулируют в неактивной форме (за исключением фактора D, который присутствует в плазме в малых количествах, в активном виде), самособираются в ответ на определенные сигналы, активируют друг друга (причем служат при этом сериновыми протеазами и/или взаимными рецепторами), а в результате осуществляют несколько важных эффектов, основные из которых:

• Лизис мишеней, активирующих комплемент;

• Опсонизация объектов, фиксирующих факторы комплемента;

• Хемотаксис и усиление фагоцитоза;

• Активация лейкоцитов и опосредование их адгезии;

• Регуляция иммунного ответа;

• Освобождение медиаторов воспаления. Белки комплемента условно подразделяются на факторы классического пути активации (обозначаются буквой С с соответствующими индексами — С1, С2, С4), факторы альтернативного пути активации (В, D), терминальные компоненты комплекса мембранной атаки (С5, С6 С7, С8, С9), а также усилители и ингибиторы комплемента (Ρ, Η, I, С4bр, DAF, MCP, HRF, С1, IΝН и др.). Особняком стоит центральный фактор всей системы С3, входящий в оба пути активации комплемента и участвующий в реализации практически всех его функций.

Фрагменты протеолиза факторов обозначаются буквенным индексом а (малые) или В (большие) например C5а или Вb. Индекс i свидетельствует о том, что это промежуточный короткоживущий продукт протеолиза (например, iC4b).

Черточка сверху символизирует наличие у компонента или комплекса компонентов ферментативной активности (С1r'), а звездочка — нестабильное состояние молекулы в водном растворе. Такие активные нестабильные молекулы образуются при протеолизе из фрагментов, имеющих тиоэфирные связи. Они быстро оседают на поверхности клеток-мишеней, так как формируют с клеточными молекулами амидные и эфирные связи (например, С4b*).

Белки комплемента — члены различных суперсемейств распознающих и каталитических молекул. Они родственны самым разным биорегуляторам и компонентам плазмы.

Так, ингибиторы комплемента Н, I, С4bp, DAF, МСР, а также его рецепторы CR1 и CR2 формируют отдельное генетически родственное семейство в хромосоме 1. Им родственны рецептор интерлейкина‑2 и XIII фактор свертывания крови.

С2 и В, а также С4 кодируются в коротком плече хромосомы 6 рядом с антигенами главного комплекса гистосовместимости и фактором некроза опухолей. Некоторые домены В и С2 родственны трипсину и химотрипсину, а С4 —α2-макроглобулину.

Фактор С3 гомологичен интегринам, Clq аналог конглютинина, белка А из состава лёгочного сурфактанта и маннансвязывающего сывороточного белка, взаимодействующего с полисахаридами бактериальных стенок. Cls содержит домены рецептора липопротеидов низкой плотности и серинэстераз, а составные части комплекса мембранной атаки имеются также в структуре стрептококкового гемолизина сnрептолизина О, цитотоксических белков эозинофилов и перфорина Т-киллеров. Наконец, C1INH родственен другим антипротеазам: α1-антитрипсину, α1-антихимотрипсину и ингибитору коагуляции антитромбину III (М. Уолпорт, 1994). Замечательным примером сформулированного А. М. Уголевым (1987) принципа универсальных функциональных блоков в эволюции реактивности служит совместное использование всех этих регуляторов в единой системе комплемента. Природа перераспределила и рекомбинировала регуляторы, первичная функция которых у одноклеточных была различной, объединив их в мощную защитную систему.

Классический путь активации комплемента — быстрый и эффективный (Б. Ф. Хайнс, А. С. Фоси; 1994). Он запускается фиксацией фрагмента С, к Fc-фрагментам пометивших мишень иммуноглобулинов (классов М, G1, G2, G3) —. Для запуска каскада необходимо связать не менее двух из шести доменов молекулы С1q .

Кроме находящихся в составе иммунного комплекса одной молекулы IgM или, минимум, двух — IgG, это могут обеспечить микоплазмы, вирус везикулярного стоматита и некоторые мышиные ретровирусы. Поэтому данные возбудители активируют классический путь комплемента без участия антител. Классический путь активизируется также под влиянием отдельных маннан-содержащих бактерий, полианионов: липида А, ДНК, кардиолипина, гликозаминогликанов, С-реактивного белка, трипсина и плазмина. В некоторых условиях даже аспирин способен его запустить.

Конформационные изменения в Cbq приводят, в присутствии кальция, к аутокаталитической активации двух молекул Сlr, которые расщепляют и превращают в активную серинэстеразу две оставшихся молекулы пентамера C1-C1s. Образовавшаяся серинэстераза C1s расщепляет белок С4, содержащий тиоэфирную связь. Его фрагмент С4b, оседает на поверхности мишени, рядом с C1s и связывает плазменный С2. Под действием Cls последний распадается, и его фрагмент С2а формирует вместе с С4b активную, связанную с поверхностью мишени С3 -конвертазу классического пути (С4b С2а).

Ряд ингибиторов, как растворимых (сертин, фактор I, белок, связывающий С4), так и мембранно-связанных (CR1, DAF, МСР) способны предупреждать или ослаблять активацию классического пути. Отсутствие DAF и другого ингибитора литических функций комплемента, HRF на мембранах мутантного клона эритроцитов наблюдается при пароксизмальной ночной гемоглобинурии (болезнь Макиафава-Микелли) и вызывает кризовый гемолиз. Под воздействием аутоантител к ингибитору С1 наступает отек гортани. Альтернативный путь активации комплемента характеризуется Б. Ф. Хайнсом и А. С. Фоси, как медленный и менее эффективный. Его значение заключается в том, что активация этого пути не требует образования комплексов антиген-антитело и, чаще всего, предшествует специфическому иммунному ответу.

Альтернативный путь срабатывает в ответ на липополисахариды (эндотоксины) бактерий, липоолигосахариды менингококков, трипаносомы, лейшмании, многие грибки, гельминты, вирусы, геморрагических лихорадок и вирус Эпштейна-Барр. Высокомолекулярные полианионы (включая полисахариды, скажем, инулин, агарозу, декстраны), гетерологичные эритроциты с их полисахаридными поверхностными молекулами и свободный гемоглобин — также активируют альтернативный путь. При иммунном ответе этот путь активируется иммунными комплексами с участием Ig A1, Ig А2 и IgD. Агрегаты IgE могут активировать альтернативный путь лишь при очень высоких концентрациях, что сводит участие этого пути в анафилактических реакциях к минимуму. Активизация альтернативного пути происходит и при контакте плазмы с поверхностью некоторых опухолевых клеток, например, асцитной карциномы Эрлиха и лимфобластом. Патогенез действия яда кобры включает активацию комплемента в плазме этим же путём.

Механизм альтернативного пути также ведет к появлению С3-конвертазы, но несколько по-иному. В нем участвуют факторы В и D, продукт спонтанного гидролиза С3 нестабильный C3i, а при самоусилении этого каскада подключается еще и плазменный белок со звучным названием «пропердин» (фактор Р).

C3i в жидкой фазе связывает В, который после этого гидролизуется с помощью D и освобождает Ва. Комплекс С3bВb это растворимая конвертаза С3, которая продолжает превращать третий фактор комплемента в С3b.

Последний оседает на клеточную поверхность и фиксирует новые молекулы В. Последующая судьба процесса зависит, во многом, от свойств этой поверхности. Система комплемента проявляет здесь элементарную способность к распознаванию «чужого» и «своего».

На мембранах собственных клеток в изобилии присутствуют вездесущие молекулы-маркеры DAF, МСР и CR1. Все они — ингибиторы образования конвертазы альтернативного пути комплемента. Соседство с ними вытесняет фактор В из комплекса с С3b, на его место приходит выигрывающий в этих условиях конкуренцию плазменный ингибитор альтернативного пути Η. Η служит адаптером для связывания фактора I, и последний разрушает С3b, через нестабильный iC3b до C3c и С3dg,. Этот фактор, оставаясь на мембране, способен служить опсонином и хемоаттрактантом, но дальнейшая активация литических эффекторов комплемента на этом обрывается.

На бактериальных и некоторых опухолевых мембранах ингибиторы не представлены и активация продолжается аутокаталитически. Связывание всё новых молекул В ведет, под протеолитическим действием D, к увеличению количества активных комплексов С3iBb то есть С3-конвертазы альтернативного пути. Пропердин (Р), в присутствии ионов магния, присоединяется к этому комплексу и предохраняет его от диссоциации, обеспечивая результативное действие самоусилительного механизма путем накопления конвертазы на поверхности мишени. Некоторые грам-положительные бактерии имеют в клеточных стенках много остатков сиаловой кислоты, что мешает поверхностной активации конвертазы альтернативного пути и способствует их патогенности.

Для защиты от некоторых бактерий, например, менингококков, именно механизм пропердин-зависимой амплификации альтернативного пути является ключевым. Не случайно, дефицит пропердина или любые другие наследственные и приобретенные аномалии активации альтернативного пути ведут к резкому понижению антименингококкового иммунитета и уменьшению эффективности соответствующей вакцинации.

Как раз носители таких отклонений составляют большую часть жертв менингококкового сепсиса.

Для эффективного продолжения протеолитического каскада конвертазы классического и альтернативного пути связывают ещё по одной молекуле С3b, что повышает их сродство к С5.

Образование терминальных компонентов комплемента требует действия конвертаз классического (С4bС2aС3b), либо альтернативного (C3bBbC3b) пути на фактор С5.

Продуктом этой протеолитической реакции являются растворимый пептид С5а — анафилотоксин 1 (сильнейший среди анафилотоксинов). Карбоксипептидаза N превращает его в лишённый концевого аргинина C5a des Arg. Вместе с продуктом протеолитической активации конвертаз С3а (анафилотоксином 2), эти пептиды служат мощными медиаторами сосудистых и клеточных реакций при воспалении.

Другой продукт распада С, входит в состав мембранно-ассоциированого комплекса, последовательно, с С6 и С7, причем после фиксации С7 весь агрегат С5bС6_7 приобретает гидрофобность и способность внедряться в липидный бислой.

Дополнительное связывание С8 придает комплексу некоторую, а фиксация С9 — исключительно сильную цитолитическую способность. В мембране образуется кольцо, пропускающее внутрь кальций, что провоцирует механизмы клеточной гибели, описанные в соответствующих главах книги. Таким образом, комплекс C5b C6-7-8-9 — буквально, своего рода «молекулярный дырокол», проделывающий в мембране пору, видимую в электронный микроскоп. Белок S (витронектин), вырабатываемый макрофагами, эндотелием и выделяемый также тромбоцитами, ингибирует активность литического комплекса комплемента, а параллельно оказывает антикоагулянтный эффект. Этот механизм предохраняет собственные клетки от атаки комплемента и предупреждает развитие васкулита.

Ряд активных нецитолитических фрагментов комплемента является важными медиаторами воспаления.

Анафилотоксины инактивируются плазменными и лейкоцитарными карбоксипептидазами В и N (источником которой являются, в частности, эозинофилы). Активность этих ферментов обеспечивает действие ранее неидентифицированного «фактора инактивации хемотаксиса» или так называемого «антианафилотоксина».

Комплемент взаимодействует с иммунной системой не только как антителозависимый цитотоксический эффектор и опсонин для иммунных комплексов, Это важный модулятор иммунного ответа. По некоторым сведениям, именно факторы комплемента способствуют изотипическому переключению синтеза иммуноглобулинов Μ на G, регулируют активацию В-клеток, а также хелперную, либо супрессорную активность. Только лимфоциты, располагающие CR3, могут участвовать в Т-зависимых иммунных реакциях. Считается, что супрессивное действие связано с С3а, а С5a, наоборот, способен отменять этот эффект.

Инактивация фактора С3 ядом кобры ведет к подавлению синтеза любых иммуноглобулинов, кроме IgM (А. Бифас и соавт.; 1985).

В заключение рассказа об основных свойствах системы комплемента будет освещен вопрос о ее наследственных и приобретенных дефектах и роли системной активации комплемента в патологии.

Эти состояния разнообразны и могут быть вызваны как наследственными мутациями (дефициты С, INH, Р, I), так и приобретенными состояниями, но их клинические проявления, как правило, сходны и включают снижение устойчивости к бактериальным инфекциям, из-за нарушения литических и опсонизирующих функций комплемента, и развитие иммунокомплексных заболеваний (ИК-синдромов), из-за помех в клиренсе иммунных комплексов.

При иммунокомплексных болезнях трудно определить, является ли дефицит факторов комплемента первичным наследственным или вторичным по отношению к иммунопатологическому процессу в организме. Так, при системной красной волчанке у клинически здоровых родственников больных, как и у самих пациентов, отмечается дефицит CR1 Вместе с тем, усиленные иммунопатологические реакции ведут к потреблению и вторичному недостатку факторов С3, С4, С2. у людей, страдающих этим заболеванием. Кроме того, у больных системной красной волчанкой имеется нарушение протективного действия витронектина. Этот белок присутствует в плазме крови больных в комплексе с терминальными факторами комплемента в повышенных количествах, но активация им антитромботических механизмов, под воздействием иммуноглобулинов больных волчанкой, снижается. Возможно, в этом феномене играют какую-то роль аутоантитела к фосфолипидным компонентам, существенным для активности витронектина, тромбомодулина и связанных с ними факторов.

Тотальная активация комплемента происходит при контакте плазмы с мембранами ионообменников искусственной полки и других устройств для экстракорпоральной терапии. Аналогичные осложнения могут быть и у пациентов с эндопротезами сосудов. Результатом является системное действие анафилотоксинов и медиаторов активированных комплементом лейкоцитов, что формирует постперфузионный синдром, сопровождаемый лихорадкой, шоком, внутрисосудистым гемолизом, лейкопенией и гипокомплементэмией потребления, кровоточивостью по капиллярному типу. Синдром исключается только в том случае, если все поверхности, с которыми контактирует кровь (плазма), будут неактивирующими.

Системная активация комплемента происходит при бактериемии Грам-отрицательными возбудителями, особенно, сальмонеллами, менингококками, пневмококками, гемофильной палочкой, при вирусемии возбудителями геморрагических лихорадок. Это важный элемент патогенеза инфекционно-токсического шока (шокового легкого).

При ожоговой болезни в системном кровотоке появляется избыток активных фрагментов комплемента, обусловливающих, наряду с прочими факторами, развитие ожогового шока и респираторного дистресс-синдрома в легких.

При остром панкреатите и травмах поджелудочной железы панкреатические протеазы активируют сторожевую полисистему крови, проникая в системный кровоток. Это ведет не только к системному действию кининов, но и к продукции анафилотоксинов. У больных может развиться тяжелый коллапс, диссеминированное внутрисосудистое свертывание крови и плюриорганная недостаточность, в том числе, шоковое лёгкое.

Очень велика роль расстройств функций комплемента в развитии нефропатий. Все нефриты, в том числе, инфекционные стрептококковые протекают с гипокомплементемией. При мембранозно-пролиферативной форме хронического диффузного гломерулонефрита в крови появляются аутоантитела к активной форме конвертазы альтернативного пути комплемента. Аутоантитела к конвертазе классического пути комплемента присутствуют при остром постстрептококковом нефрите и системной красной волчанке. Эти аутоантитела (нефритогенные факторы) блокируют освобождение ингибитором Η фактора С3 из состава конвертазы и происходит снижение плазменной концентрации этого фактора. В результате нарушается клиренс иммунных комплексов, и они откладываются в клубочках почек, активируется комплементзависимый лизис эндотелия и других тканей и ослабевает устойчивость к гноеродной, в том числе, менингококковой инфекции. Нефритогенный фактор характерен и для парциальной липодистрофии, зачастую сопровождаемой дефицитом С3 и гломерулонефритом. При любых видах нефротического синдрома факторы комплемента, особенно, В, Ρ и С4, теряются с мочой, что обусловливает вторичную гипокомплементэмию и иммунодефицит по отношению к бактериальной инфекции. При цитотоксической форме аутоиммунного гломерулонефрита (подострый злокачественный гломерулонефрит с «полулуниями», гломерулонефрит при синдроме Гудпасчера) комплемент опосредует лизис ткани клубочков под воздействием аутоантител к компонентам их базальной мембраны.

При СПИДе имеется дефицит ряда факторов комплемента на фоне значительного избытка в крови С3а. В связи с иммуносупрессивным действием этого анафилотоксина предполагается, что его накопление вносит вклад в развитие иммунологической недостаточности у таких больных (А. М. Ищенко, С. В. Андреев; 1987).

Содержание многих факторов комплемента снижено, по сравнению со взрослыми, у новорожденных и, особенно, недоношенных детей, при голодании и печеночной недостаточности. Поэтому, во всех этих случаях понижена антибактериальная резистентность.

Кининовая система и нейропептиды
Кининовая система — система убиквитарных коротких пептидных медиаторов, активируемая после прямого контакта фактора Хагемана с полианионными поверхностями.

Короткий пептид ХIIа, отщепляемый от фактора Хагемана, активирует фермент прекалликреин путем его протеолиза. Тот переходит в калликреин и расщепляет плазменный α2-гликопротеид-предшественник (печеночного, тромбоцитарного и макрофагального происхождения) — высокомолекулярный кининоген (ВК) с образованием главного кинина крови — нонапептида брадикинина. ВК содержится также в эндотелии и тучных клетках, но не доказано, что он там образуется.

Аутокаталитический механизм этого каскада заключается в том, что и ВК и прекалликреин способны дополнительно активировать фактор Хагемана. Калликреин содержат яды многих опасных змей, например, джарараки. Именно этой южноамериканской змее мы обязаны открытием кининовой системы, поскольку бразильский патофизиолог М. Роха-э-Силва (1948) обнаружил брадикинин, изучая механизмы действия ее яда.

Аналогичные каскадные реакции приводят к появлению в тканевой жидкости декапептида каллидина (лизил-брадикинина) из тканевого предшественника каллидиногена — аналога ВК, под действием калликреинов поджелудочной, слюнной и других желёз, почек и других органов.

Параллельно этим процессам, как уже говорилось выше, запускаются и другие компоненты сторожевой полисистемы. В частности, калликреин способствует превращению плазминогена в плазмин. Плазмин, как и трипсин, способен оказать обратное кинин-освобождающее действие на кининогены. Кинины образуются не только в крови и тканевой жидкости, но и в секрете ряда желёз, особенно, слюнных. Они входят в состав ядов, выделяемых соответствующими железами осьминога, ос, пчел, скорпионов и амфибий. Кинины относятся к короткоживущим медиаторам (время полужизни брадикинина в плазме — 30 сек), быстро расщепляемые карбоксипептидазой N (кининазой, содержащейся, в плазме, лейкоцитах и, особенно, в эозинофилах), а также карбоксипептидазой В, активируемой путем протеолиза. Поэтому они выступают исключительно в роли местных аутокоидов. Близкими к кининам являются некоторые нейропептиды, в частности, вещество Ρ и нейрокинин А. Медиаторы ренин-ангиотензиновой системы родственны кининам по принципам своей активации, структуре и спектру действия. Однако они, в основном, реализуют противоположные кининам эффекты, в частности, на сосуды и рассматриваются некоторыми авторами, как физиологические антагонисты кининовой системы (Т. С. Пасхина 1965). Интересно, что лёгочная ангиотензинконвертаза активирует систему ангиотензинов, но разрушает кинины. Поэтому её блокада фармакологическими агентами сдвигает баланс этих систем в пользу кининов, что используется в терапии гипертензий.

Кинины в норме служат медиаторами рабочей артериальной гиперемии, особенно, в функционирующих железах, например, слюнных. Вполне возможно, что их совокупное действие способствует поддержанию оптимального уровня общего периферического сопротивления и предохраняет от гипертензий (О. А. Гомазков, А. А. Дзизинский, 1976). При воспалении образуются значительные количества кининов.

Брадикинин в отношении большинства этих эффектов более активен, чем каллидин, а тот, в свою очередь, превосходит третий из выделенных кининов — метионил-лизил-брадикинин. В отношении системного гипотензивного эффекта соотношение активности кининов строго обратное.

Ряд эффектов кининов опосредован их действием на апудоциты диффузной эндокринной системы. Например, ингаляция брадикинина не вызывает бронхоспазма у здоровых индивидов, но провоцирует приступ у лиц, страдающих «астмой, вызванной физическими усилиями», в патогенезе которой имеет большое значение химическая и физическая стимуляция апудоцитов подслизистого слоя бронхов, выделяющих вещество Ρ и другие бронхоконстрикторы.

Вещество Р, ундекапептид, в котором первые 2 аминокислоты совпадают с брадикинином, вообще, связано с кининами физиологически. Как и другие нейропептиды (полипептид, ассоциированный с геном кальцитонина, нейрокинин А) оно участвует в механизмах воспаления в тесной кооперации с кининами.

Нейропептиды синтезируются апудоцитами и сенсорными нейронами, которые образуют на периферии немиелинизированые нервные С-волокна. Эти чувствительные волокна образуют разветвления, пригодные для осуществления местных аксон-рефлексов, на соединительнотканных тучных клетках. С-волокна служат полимодальными ноцирецепторами. Их физические и химические раздражения, включая действие гистамина, простагландинов, простациклина и, в первую очередь, кининов — вызывают чувство боли (dolor). Нейропептиды, особенно, вещество Р, потенцируют их болевые эффекты. Аксон-рефлексы с участием нейропептидов вызывают дегрануляцию мастоцитов и освобождение из них новых порций болевых медиаторов.

Субстанция Ρ ответственна за проведение болевого ощущения в спинной мозг. Этот эффект блокируется алкалоидом красного перца капсаицином, что объясняет обезболивающее действие перцового Пластыря при радикулите. Эндорфины также блокируют Р-зависимое спинальное проведение боли.

Вещество Ρ может само вызывать анальгетический центральный эффект в дорсальных ядрах шва, а его протеолитические фрагменты, например тетрапептид Р являются гиперальгетиками. Общая направленность действия этого нейропептида зависит от путей его протеолиза, уровня концентрации и пермиссивного действия других регуляторов.

Итак, боль весьма зависит от координированного действия кининов и нейропептидов при важной роли элементов диффузной нейроэндокринной системы. Следует отметить, что боль при остром воспалении может быть выражена в разной степени — от мучительных приступов, сопровождающих массированное освобождение кининов (в форме опоясывающих болей при панкреатите или симптома «раскаленных щипцов» при подагрическом артрите суставов первого пальца стопы), и до, практически, полного отсутствия этого признака (например, при пневмонии, не вовлекающей париетальную плевру, с её ноцирецепторами

Кроме альгоэргического действия, нейропептиды, через мастоцитарные медиаторы, повышают проницаемость сосудов и потенцируют привлечение нейтрофилов в очаг воспаления.

Остальные компоненты сторожевой подсистемы рассматривались в категории «Тромбоз». Это позволяет перейти к характеристике следующей химической группы медиаторов.

Просмотров: 537  |  Комментариев: (0)  | 
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.